Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Malar J ; 23(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383417

RESUMO

BACKGROUND: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate. This has been hindering experimentations with well-established technologies, such as electron microscopy. A deeper understanding of hypnozoite biology could prove essential in the development of radical cure therapeutics against malaria. RESULTS: The liver stages of the rodent parasite Plasmodium berghei, causing non-relapsing malaria, and the simian parasite Plasmodium cynomolgi, causing relapsing malaria, were characterized in human Huh7 cells or primary non-human primate hepatocytes using Correlative Light-Electron Microscopy (CLEM). Specifically, CLEM approaches that rely on GFP-expressing parasites (GFP-CLEM) or on an immunofluorescence assay (IFA-CLEM) were used for imaging liver stages. The results from P. berghei showed that host and parasite organelles can be identified and imaged at high resolution using both CLEM approaches. While IFA-CLEM was associated with more pronounced extraction of cellular content, samples' features were generally well preserved. Using IFA-CLEM, a collection of micrographs was acquired for P. cynomolgi liver stage schizonts and hypnozoites, demonstrating the potential of this approach for characterizing the liver stages of Plasmodium species causing relapsing malaria. CONCLUSIONS: A CLEM approach that does not rely on parasites expressing genetically encoded tags was developed, therefore suitable for imaging the liver stages of Plasmodium species that lack established protocols to perform genetic engineering. This study also provides a dataset that characterizes the ultrastructural features of liver stage schizonts and hypnozoites from the simian parasite species P. cynomolgi.


Assuntos
Malária , Parasitos , Animais , Humanos , Fígado/parasitologia , Malária/parasitologia , Plasmodium berghei , Microscopia Eletrônica
3.
Nat Microbiol ; 8(5): 819-832, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037941

RESUMO

Whether or not autophagy has a role in defence against Mycobacterium tuberculosis infection remains unresolved. Previously, conditional knockdown of the core autophagy component ATG5 in myeloid cells was reported to confer extreme susceptibility to M. tuberculosis in mice, whereas depletion of other autophagy factors had no effect on infection. We show that doubling cre gene dosage to more robustly deplete ATG16L1 or ATG7 resulted in increased M. tuberculosis growth and host susceptibility in mice, although ATG5-depleted mice are more sensitive than ATG16L1- or ATG7-depleted mice. We imaged individual macrophages infected with M. tuberculosis and identified a shift from apoptosis to rapid necrosis in autophagy-depleted cells. This effect was dependent on phagosome permeabilization by M. tuberculosis. We monitored infected cells by electron microscopy, showing that autophagy protects the host macrophage by partially reducing mycobacterial access to the cytosol. We conclude that autophagy has an important role in defence against M. tuberculosis in mammals.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Tuberculose/microbiologia , Autofagia/genética , Macrófagos/microbiologia , Proteína 5 Relacionada à Autofagia/genética , Mamíferos
4.
Malar J ; 21(1): 393, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564750

RESUMO

BACKGROUND: The zoonotic simian parasite Plasmodium cynomolgi develops into replicating schizonts and dormant hypnozoites during the infection of hepatocytes and is used as a model organism to study relapsing malaria. The transcriptional profiling of P. cynomolgi liver stages was previously reported and revealed many important biological features of the parasite but left out the host response to malaria infection. METHODS: Previously published RNA sequencing data were used to quantify the expression of host genes in rhesus macaque hepatocytes infected with P. cynomolgi in comparison to either cells from uninfected samples or uninfected bystander cells. RESULTS: Although the dataset could not be used to resolve the transcriptional profile of hypnozoite-infected hepatocytes, it provided a snapshot of the host response to liver stage schizonts at 9-10 day post-infection and identified specific host pathways that are modulated during the exo-erythrocytic stage of P. cynomolgi. CONCLUSIONS: This study constitutes a valuable resource characterizing the hepatocyte response to P. cynomolgi infection and provides a framework to build on future research that aims at understanding hepatocyte-parasite interactions during relapsing malaria infection.


Assuntos
Malária , Parasitos , Plasmodium cynomolgi , Animais , Plasmodium cynomolgi/genética , Macaca mulatta/parasitologia , Hepatócitos/parasitologia , Malária/parasitologia , Fígado/parasitologia
5.
mBio ; 13(1): e0272621, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073755

RESUMO

Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Escherichia coli , Proteômica , Bactérias , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Testes de Sensibilidade Microbiana
6.
Nat Microbiol ; 4(12): 2538-2551, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611642

RESUMO

Rickettsia are obligate intracellular bacteria that evade antimicrobial autophagy in the host cell cytosol by unknown mechanisms. Other cytosolic pathogens block different steps of autophagy targeting, including the initial step of polyubiquitin-coat formation. One mechanism of evasion is to mobilize actin to the bacterial surface. Here, we show that actin mobilization is insufficient to block autophagy recognition of the pathogen Rickettsia parkeri. Instead, R. parkeri employs outer membrane protein B (OmpB) to block ubiquitylation of the bacterial surface proteins, including OmpA, and subsequent recognition by autophagy receptors. OmpB is also required for the formation of a capsule-like layer. Although OmpB is dispensable for bacterial growth in endothelial cells, it is essential for R. parkeri to block autophagy in macrophages and to colonize mice because of its ability to promote autophagy evasion in immune cells. Our results indicate that OmpB acts as a protective shield to obstruct autophagy recognition, thereby revealing a distinctive bacterial mechanism to evade antimicrobial autophagy.


Assuntos
Autofagia/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Evasão da Resposta Imune , Infecções por Rickettsia/imunologia , Rickettsia/imunologia , Células A549 , Animais , Proteínas da Membrana Bacteriana Externa/genética , Linhagem Celular , Chlorocebus aethiops , Citosol/microbiologia , Modelos Animais de Doenças , Células Endoteliais/microbiologia , Feminino , Técnicas de Inativação de Genes , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos , Poliubiquitina/metabolismo , Rickettsia/genética , Rickettsia/crescimento & desenvolvimento , Infecções por Rickettsia/microbiologia , Transcriptoma , Células Vero , Virulência
7.
Elife ; 82019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31204998

RESUMO

Macrophages play critical roles in immunity, development, tissue repair, and cancer, but studies of their function have been hampered by poorly-differentiated tumor cell lines and genetically-intractable primary cells. Here we report a facile system for genome editing in non-transformed macrophages by differentiating ER-Hoxb8 myeloid progenitors from Cas9-expressing transgenic mice. These conditionally immortalized macrophages (CIMs) retain characteristics of primary macrophages derived from the bone marrow yet allow for easy genetic manipulation and a virtually unlimited supply of cells. We demonstrate the utility of this system for dissection of host genetics during intracellular bacterial infection using two important human pathogens: Listeria monocytogenes and Mycobacterium tuberculosis.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mycobacterium tuberculosis/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Linhagem Celular , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Listeria monocytogenes/fisiologia , Macrófagos/microbiologia , Camundongos Transgênicos , Mycobacterium tuberculosis/fisiologia , Células-Tronco/imunologia , Células-Tronco/metabolismo
8.
Cell Host Microbe ; 23(6): 786-795.e5, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29902442

RESUMO

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that mediates escape of Listeria monocytogenes from a phagosome, enabling growth of the bacteria in the host cell cytosol. LLO contains a PEST-like sequence that prevents it from killing infected cells, but the mechanism involved is unknown. We found that the LLO PEST-like sequence was necessary to mediate removal of LLO from the interior face of the plasma membrane, where it coalesces into discrete puncta. LLO interacts with Ap2a2, an adaptor protein involved in endocytosis, via its PEST-like sequence, and Ap2a2-dependent endocytosis is required to prevent LLO-induced cytotoxicity. An unrelated PEST-like sequence from a human G protein-coupled receptor (GPCR), which also interacts with Ap2a2, could functionally complement the PEST-like sequence in L. monocytogenes LLO. These data revealed that LLO co-opts the host endocytosis machinery to protect the integrity of the host plasma membrane during L. monocytogenes infection.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/patogenicidade , Listeriose/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Animais , Contagem de Colônia Microbiana , Citosol/metabolismo , Citosol/microbiologia , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/metabolismo , Receptores Acoplados a Proteínas G , Baço/microbiologia
9.
Cell Microbiol ; 20(9): e12854, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29726107

RESUMO

Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin-based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin-based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time-lapse microscopy using green fluorescent protein-LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin-based motility moved away from LC3-positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin-based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.


Assuntos
Actinas/metabolismo , Autofagia , Citosol/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/imunologia , Macrófagos/imunologia , Movimento (Física) , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Evasão da Resposta Imune , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Multimerização Proteica , Imagem com Lapso de Tempo
10.
PLoS One ; 13(3): e0193049, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513700

RESUMO

Recent developments in automated tracking allow uninterrupted, high-resolution recording of animal trajectories, sometimes coupled with the identification of stereotyped changes of body pose or other behaviors of interest. Analysis and interpretation of such data represents a challenge: the timing of animal behaviors may be stochastic and modulated by kinematic variables, by the interaction with the environment or with the conspecifics within the animal group, and dependent on internal cognitive or behavioral state of the individual. Existing models for collective motion typically fail to incorporate the discrete, stochastic, and internal-state-dependent aspects of behavior, while models focusing on individual animal behavior typically ignore the spatial aspects of the problem. Here we propose a probabilistic modeling framework to address this gap. Each animal can switch stochastically between different behavioral states, with each state resulting in a possibly different law of motion through space. Switching rates for behavioral transitions can depend in a very general way, which we seek to identify from data, on the effects of the environment as well as the interaction between the animals. We represent the switching dynamics as a Generalized Linear Model and show that: (i) forward simulation of multiple interacting animals is possible using a variant of the Gillespie's Stochastic Simulation Algorithm; (ii) formulated properly, the maximum likelihood inference of switching rate functions is tractably solvable by gradient descent; (iii) model selection can be used to identify factors that modulate behavioral state switching and to appropriately adjust model complexity to data. To illustrate our framework, we apply it to two synthetic models of animal motion and to real zebrafish tracking data.


Assuntos
Algoritmos , Comportamento Animal/fisiologia , Modelos Estatísticos , Comportamento Social , Animais , Formigas/fisiologia , Simulação por Computador , Peixes/fisiologia , Movimento (Física)
11.
Proc Natl Acad Sci U S A ; 115(2): E210-E217, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279409

RESUMO

Xenophagy is a selective macroautophagic process that protects the host cytosol by entrapping and delivering microbes to a degradative compartment. Both noncanonical autophagic pathways and xenophagy are activated by microbes during infection, but the relative importance and function of these distinct processes are not clear. In this study, we used bacterial and host mutants to dissect the contribution of autophagic processes responsible for bacterial growth restriction of Listeria monocytogenesL. monocytogenes is a facultative intracellular pathogen that escapes from phagosomes, grows in the host cytosol, and avoids autophagy by expressing three determinants of pathogenesis: two secreted phospholipases C (PLCs; PlcA and PlcB) and a surface protein (ActA). We found that shortly after phagocytosis, wild-type (WT) L. monocytogenes escaped from a noncanonical autophagic process that targets damaged vacuoles. During this process, the autophagy marker LC3 localized to single-membrane phagosomes independently of the ULK complex, which is required for initiation of macroautophagy. However, growth restriction of bacteria lacking PlcA, PlcB, and ActA required FIP200 and TBK1, both involved in the engulfment of microbes by xenophagy. Time-lapse video microscopy revealed that deposition of LC3 on L. monocytogenes-containing vacuoles via noncanonical autophagy had no apparent role in restricting bacterial growth and that, upon access to the host cytosol, WT L. monocytogenes utilized PLCs and ActA to avoid subsequent xenophagy. In conclusion, although noncanonical autophagy targets phagosomes, xenophagy was required to restrict the growth of L. monocytogenes, an intracellular pathogen that damages the entry vacuole.


Assuntos
Autofagia , Listeria monocytogenes/fisiologia , Macrófagos/microbiologia , Fagocitose , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citosol/metabolismo , Citosol/microbiologia , Interações Hospedeiro-Patógeno , Listeria monocytogenes/genética , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Fagossomos/metabolismo , Fagossomos/microbiologia , Imagem com Lapso de Tempo/métodos , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
12.
PLoS Pathog ; 13(11): e1006734, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29190284

RESUMO

Listeria monocytogenes causes listeriosis, a foodborne disease that poses serious risks to fetuses, newborns and immunocompromised adults. This intracellular bacterial pathogen proliferates in the host cytosol and exploits the host actin polymerization machinery to spread from cell-to-cell and disseminate in the host. Here, we report that during several days of infection in human hepatocytes or trophoblast cells, L. monocytogenes switches from this active motile lifestyle to a stage of persistence in vacuoles. Upon intercellular spread, bacteria gradually stopped producing the actin-nucleating protein ActA and became trapped in lysosome-like vacuoles termed Listeria-Containing Vacuoles (LisCVs). Subpopulations of bacteria resisted degradation in LisCVs and entered a slow/non-replicative state. During the subculture of host cells harboring LisCVs, bacteria showed a capacity to cycle between the vacuolar and the actin-based motility stages. When ActA was absent, such as in ΔactA mutants, vacuolar bacteria parasitized host cells in the so-called "viable but non-culturable" state (VBNC), preventing their detection by conventional colony counting methods. The exposure of infected cells to high doses of gentamicin did not trigger the formation of LisCVs, but selected for vacuolar and VBNC bacteria. Together, these results reveal the ability of L. monocytogenes to enter a persistent state in a subset of epithelial cells, which may favor the asymptomatic carriage of this pathogen, lengthen the incubation period of listeriosis, and promote bacterial survival during antibiotic therapy.


Assuntos
Células Epiteliais/metabolismo , Listeria monocytogenes , Listeriose/microbiologia , Proteínas de Bactérias/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Vacúolos
13.
Cell Host Microbe ; 22(2): 166-175, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28799902

RESUMO

Recent excitement regarding immune clearance of intracellular microorganisms has focused on two systems that maintain cellular homeostasis. One system includes cellular autophagy components that mediate degradation of pathogens in membrane-bound compartments, in a process termed xenophagy. The second system is driven by interferon-regulated GTPases that promote rupture of pathogen-containing vacuoles and microbial degradation. In the case of xenophagy, pathogen sequestration and compartmentalization suppress inflammation. In contrast, interferon-driven events can lead to exposure of pathogen-associated molecular patterns to the host cytosol with consequent inflammasome activation. Paradoxically, signals and factors involved in xenophagy also mobilize interferon-regulated GTPases, which drive the inflammatory response, indicating considerable cross-talk between these pathways. How these responses are prioritized remains to be understood. In this review, we describe mechanisms of intracellular pathogen clearance that rely on the autophagy machinery and interferon-regulated GTPases, and speculate how these pathways engage each other to balance pathogen elimination with inflammation.


Assuntos
Autofagia/fisiologia , Citoplasma/imunologia , Citoplasma/microbiologia , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Inflamação/imunologia , Animais , GTP Fosfo-Hidrolases/metabolismo , Humanos , Inflamassomos/metabolismo , Interferon gama/metabolismo , Interferons/metabolismo , Vacúolos/metabolismo
14.
J Clin Microbiol ; 54(12): 3010-3017, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27707939

RESUMO

Haemophilus haemolyticus has been recently discovered to have the potential to cause invasive disease. It is closely related to nontypeable Haemophilus influenzae (NT H. influenzae). NT H. influenzae and H. haemolyticus are often misidentified because none of the existing tests targeting the known phenotypes of H. haemolyticus are able to specifically identify H. haemolyticus Through comparative genomic analysis of H. haemolyticus and NT H. influenzae, we identified genes unique to H. haemolyticus that can be used as targets for the identification of H. haemolyticus A real-time PCR targeting purT (encoding phosphoribosylglycinamide formyltransferase 2 in the purine synthesis pathway) was developed and evaluated. The lower limit of detection was 40 genomes/PCR; the sensitivity and specificity in detecting H. haemolyticus were 98.9% and 97%, respectively. To improve the discrimination of H. haemolyticus and NT H. influenzae, a testing scheme combining two targets (H. haemolyticus purT and H. influenzae hpd, encoding protein D lipoprotein) was also evaluated and showed 96.7% sensitivity and 98.2% specificity for the identification of H. haemolyticus and 92.8% sensitivity and 100% specificity for the identification of H. influenzae, respectively. The dual-target testing scheme can be used for the diagnosis and surveillance of infection and disease caused by H. haemolyticus and NT H. influenzae.


Assuntos
Hibridização Genômica Comparativa/métodos , Infecções por Haemophilus/diagnóstico , Haemophilus influenzae/classificação , Haemophilus influenzae/genética , Lipoproteínas/genética , Fosforribosilglicinamido Formiltransferase/genética , Sequência de Bases , DNA Bacteriano/genética , Genoma Bacteriano/genética , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/isolamento & purificação , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Análise de Sequência de DNA
15.
Microbiol Spectr ; 4(3)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27337444

RESUMO

Intracellular bacteria are often clinically relevant pathogens that infect virtually every cell type found in host organisms. However, myeloid cells, especially macrophages, constitute the primary cells targeted by most species of intracellular bacteria. Paradoxically, macrophages possess an extensive antimicrobial arsenal and are efficient at killing microbes. In addition to their ability to detect and signal the presence of pathogens, macrophages sequester and digest microorganisms using the phagolysosomal and autophagy pathways or, ultimately, eliminate themselves through the induction of programmed cell death. Consequently, intracellular bacteria influence numerous host processes and deploy sophisticated strategies to replicate within these host cells. Although most intracellular bacteria have a unique intracellular life cycle, these pathogens are broadly categorized into intravacuolar and cytosolic bacteria. Following phagocytosis, intravacuolar bacteria reside in the host endomembrane system and, to some extent, are protected from the host cytosolic innate immune defenses. However, the intravacuolar lifestyle requires the generation and maintenance of unique specialized bacteria-containing vacuoles and involves a complex network of host-pathogen interactions. Conversely, cytosolic bacteria escape the phagolysosomal pathway and thrive in the nutrient-rich cytosol despite the presence of host cell-autonomous defenses. The understanding of host-pathogen interactions involved in the pathogenesis of intracellular bacteria will continue to provide mechanistic insights into basic cellular processes and may lead to the discovery of novel therapeutics targeting infectious and inflammatory diseases.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/microbiologia , Animais , Bactérias/patogenicidade , Citosol/microbiologia , Humanos , Vacúolos/microbiologia
16.
Antimicrob Agents Chemother ; 59(12): 7458-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26392496

RESUMO

This study investigated the antibacterial activity of the plant alkaloid tomatidine (TO) against Staphylococcus aureus grown in the presence of Pseudomonas aeruginosa. Since the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) is known to cause a respiratory deficiency in S. aureus and respiratory-deficient S. aureus are known to be hypersensitive to TO, we assessed kill kinetics of TO (8 µg/ml) against S. aureus in coculture with P. aeruginosa. Kill kinetics were also assessed using P. aeruginosa mutants deficient in the production of different exoproducts and quorum sensing-related compounds. After 24 h in coculture, TO increased the killing of S. aureus by 3.4 log10 CFU/ml in comparison to that observed in a coculture without TO. The effect of TO was abolished when S. aureus was in coculture with the lasR rhlR, pqsA, pqsL, or lasA mutant of P. aeruginosa. The bactericidal effect of TO against S. aureus in coculture with the pqsL mutant was restored by supplemental HQNO. In an S. aureus monoculture, the combination of HQNO and TO was bacteriostatic, indicating that the pqsL mutant produced an additional factor required for the bactericidal effect. The bactericidal activity of TO was also observed against a tobramycin-resistant methicillin-resistant S. aureus (MRSA) in coculture with P. aeruginosa, and the addition of tobramycin significantly suppressed the growth of both microorganisms. TO shows a strong bactericidal effect against S. aureus when cocultured with P. aeruginosa. The combination of TO and tobramycin may represent a new treatment approach for cystic fibrosis patients frequently cocolonized by MRSA and P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Tomatina/análogos & derivados , Proteínas de Bactérias/genética , Técnicas de Cocultura , Sinergismo Farmacológico , Hidroxiquinolinas/metabolismo , Metaloproteases/genética , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/genética , Percepção de Quorum , Tomatina/farmacologia , Transativadores/genética , Fatores de Virulência/genética
17.
Infect Immun ; 83(5): 2175-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25776746

RESUMO

Listeria monocytogenes is a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, including the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% ± 7%) at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% ± 6%). While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% ± 5%). Coexpression of LLO and PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of autophagy by L. monocytogenes primarily involves PlcA and ActA and that either one of these factors must be present for L. monocytogenes growth in macrophages.


Assuntos
Autofagia/imunologia , Proteínas de Bactérias/metabolismo , Evasão da Resposta Imune , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Deleção de Genes , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Fosfolipases Tipo C/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
Eur J Med Chem ; 80: 605-20, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24877760

RESUMO

Staphylococcus aureus (S. aureus) is responsible for difficult-to-treat and relapsing infections and constitutes one of the most problematic pathogens due to its multiple resistances to clinically available antibiotics. Additionally, the ability of S. aureus to develop small-colony variants is associated with a reduced susceptibility to aminoglycoside antibiotics and in vivo persistence. We have recently demonstrated that tomatidine, a steroid alkaloid isolated from tomato plants, possesses anti-virulence activity against normal strains of S. aureus as well as the ability to potentiate the effect of aminoglycoside antibiotics. In addition, tomatidine has shown antibiotic activity against small-colony variants of S. aureus. We herein report the first study of the structure-activity relationship of tomatidine against S. aureus.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tomatina/análogos & derivados , Testes de Sensibilidade Microbiana , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Tomatina/química , Tomatina/farmacologia
19.
PLoS One ; 9(1): e86705, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24466207

RESUMO

Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF) patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H)-quinolones (AQs) Pseudomonas Quinolone Signal (PQS) and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO) produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Interações Microbianas/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Quinolonas/farmacologia , Staphylococcus aureus/isolamento & purificação , Adolescente , Adulto , Biofilmes/efeitos dos fármacos , Cromatografia Líquida , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Adulto Jovem
20.
PLoS One ; 8(5): e65018, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23705029

RESUMO

Staphylococcus aureus small-colony variants (SCVs) are persistent pathogenic bacteria characterized by slow growth and, for many of these strains, an increased ability to form biofilms and to persist within host cells. The virulence-associated gene expression profile of SCVs clearly differs from that of prototypical strains and is often influenced by SigB rather than by the agr system. One objective of this work was to confirm the role of SigB in the control of the expression of virulence factors involved in biofilm formation and intracellular persistence of SCVs. This study shows that extracellular proteins are involved in the formation of biofilm by three SCV strains, which, additionally, have a low biofilm-dispersing activity. It was determined that SigB activity modulates biofilm formation by strain SCV CF07-S and is dominant over that of the agr system without being solely responsible for the repression of proteolytic activity. On the other hand, the expression of fnbA and the control of nuclease activity contributed to the SigB-dependent formation of biofilm of this SCV strain. SigB was also required for the replication of CF07-S within epithelial cells and may be involved in the colonization of lungs by SCVs in a mouse infection model. This study methodically investigated SigB activity and associated mechanisms in the various aspects of SCV pathogenesis. Results confirm that SigB activity importantly influences the production of virulence factors, biofilm formation and intracellular persistence for some clinical SCV strains.


Assuntos
Proteínas de Bactérias/metabolismo , Fator sigma/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Animais , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Contagem de Colônia Microbiana , DNA Bacteriano/metabolismo , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Espaço Extracelular/metabolismo , Hemólise , Humanos , Espaço Intracelular/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Proteólise , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Ovinos , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...